наверх

Методы обработки и анализа биомедицинских сигналов

 width=
Старт через 73 дня
122 дня
До конца записи
  • 6 недель

    длительность курса

  • от 8 до 12 часов в неделю

    понадобится для освоения

  • 3 зачётных единицы

    для зачета в своем вузе

Дисциплина «Методы обработки и анализа биомедицинских сигналов» посвящена рассмотрению современных методов цифровой обработки и анализа электрофизиологических сигналов, включая: фильтрацию, спектральный и корреляционный анализ, распознавание и классификация форм биомедицинских сигналов. Теоретические сведения в дисциплине закрепляются выполнением заданий на программирование и лабораторными работами в среде MATLAB.

О курсе

Курс посвящен изучению различных методов обработки биомедицинских сигналов, а также реализации этих методов с использованием современных систем разработки программного обеспечения. Рассматриваются методы дискретного представления данных, основы цифровой фильтрации, методы цифрового спектрального анализа. Приводятся примеры различных классов биомедицинских сигналов и методов их обработки на различных этапах:

  • предварительная обработка;
  • цифровая фильтрация; 
  • выделение информативных признаков;
  • распознавание и классификация формы сигналов.

Рассматриваются вопросы применения описываемых методов в приборах и системах медицинского назначения.

В ходе курса предусмотрено выполнение шести лабораторных работ.

Формат

Курс включает:

  • тематические видеолекции;
  • многовариантные тестовые задания;
  • лабораторные работы.

Предусмотрено промежуточное и итоговое контрольное тестирование по содержанию всего курса.

Курс рассчитан на 6 недель изучения. Недельная учебная нагрузка обучающихся по курсу составляет 12 часов. Общая трудоемкость курса – 3 зачетные единицы.

  1. Немирко А.П., Манило Л.А., Калиниченко А.Н. Математический анализ биомедицинских сигналов и данных. – М.: ФИЗМАТЛИТ, 2017. — 248 с.
  2. Методы обработки биомедицинских сигналов: учебно-методическое пособие /; сост.: А.Н. Калиниченко. - СПб.: Изд-во СПбГЭТУ ЛЭТИ, 2019. - 76 с.
  3. Рангайян Р. М. Анализ биомедицинских сигналов: Пер. с англ. А. Н. Калиниченко под ред. А. П. Немирко. – М.: Физматлит. 2007. – 440 с.

Требования

Курс рассчитан на бакалавров 3-го года обучения, освоивших базовые курсы физики, математики, информационных технологий, компонентов электронной техники.

Может быть использован для подготовки магистров и специалистов в области биотехнических систем.

Программа курса

Вступление. Обработка сигналов. О чем этот курс.

Модуль 1. Цифровая обработка сигналов.

Урок 1. Цифровое представление сигналов.

Урок 2. Работа с данными в MATLAB.

Урок 3. Корреляционный анализ сигналов.

Модуль 2. Основы цифровой фильтрации сигналов.

Урок 1. Основные понятия цифровой фильтрации.

Урок 2. Основные характеристики цифровых фильтров.

Урок 3. Методы анализа цифровых фильтров.

Модуль 3. Реализация методов цифровой фильтрации.

Урок 1. Нерекурсивные фильтры. Цифровое дифференцирование.

Урок 2. Рекурсивные фильтры. Цифровое интегрирование.

Урок 3. Адаптивная фильтрация.

Модуль 4. Спектральный анализ сигналов на основе ДПФ.

Урок 1. Основные понятия спектрального анализа сигналов.

Урок 2. Подготовка данных для цифрового спектрального анализа.

Урок 3. Практические методики спектральной оценки.

Модуль 5. Параметрические методы СА.

Урок 1. Параметрические методы спектрального анализа.

Урок 2. Сплайн-интерполяция.

Урок 3. Спектральный анализ вариабельности сердечного ритма.

Модуль 6. Практические примеры цифровой обработки и анализа биомедицинских сигналов.

Урок 1. Выделение ритмов ЭКГ.

Урок 2. Ритмокардиография и векторкардиография.

Урок 3. Цифровая обработка сигналов ЭЭГ.

Заключение. Разработка сложных биомедицинских систем. Следующие шаги.

Результаты обучения

В результате освоения курса, обучающийся способен:

  1. Знать и понимать принципы, методы и алгоритмы обработки и анализа биомедицинских сигналов, а также методы синтеза соответствующих программно-алгоритмических средств, применяемых в биотехнических и медицинских системах.
  2. Уметь применять полученные знания в разработках, связанных с исследованием и проектированием информационного обеспечения приборов, систем и комплексов биомедицинского назначения. Владеть навыками работы с научной литературой для самостоятельного решения научно-исследовательских и прикладных задач в данной области знаний.
  3. Понимать современные тенденции развития информационных технологий и перспективы их использования в биологии и медицине.

Формируемые компетенции

12.03.04 Биотехнические системы и технологии

ОПК-1. Способность применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в инженерной деятельности, связанной с разработкой, проектированием, конструированием, технологиями производства и эксплуатации биотехнических систем

ОПК-2. Способен проводить экспериментальные исследования и измерения, обрабатывать и представлять полученные данные с учетом специфики биотехнических систем и технологий

Калиниченко Александр Николаевич

Доктор технических наук, профессор
Должность: профессор кафедры Биотехнических систем СПбГЭТУ «ЛЭТИ»

Пустозеров Евгений Анатольевич

Кандидат технических наук
Должность: доцент кафедры Биотехнических систем СПбГЭТУ «ЛЭТИ»

Живолупова Юлия Александровна


Должность: старший преподаватель кафедры Биотехнических систем СПбГЭТУ «ЛЭТИ»

сертификат об окончании курса

Сертификат

Сертификат участника обычно выдается при достижении 60% от общего рейтинга при условии сдачи работ до жесткого дедлайна. Сертификат с отличием, как правило, выдается при достижении 90% от общего рейтинга при условии сдачи работ до мягкого дедлайна.

Похожие курсы