язык курса
длительность курса
понадобится для освоения
для зачета в своем вузе
В первом модуле предлагается рассмотрение основ физики полупроводниковых материалов: зонная теория твёрдых тел, статистика свободных носителей заряда, принципы легирования полупроводников, а также процессы дрейфа и диффузии. Вводятся понятия генерации и рекомбинации, приводится анализ электрических режимов pn-перехода с описанием соответствующих характеристик. Здесь, математическим выкладкам уделено меньше внимания, т.к. акцент в основном ставится на рассмотрении именно физических процессов, происходящих в полупроводниковых приборах. Такого рода подход оправдан тем, что у слушателя данного курса, появляется возможность наиболее оперативного перехода к последующему анализу принципов работы изделий электронной техники.
Второй модуль данного курса ориентирован на вопросы, связанные с рассмотрением принципов работы биполярного транзистора. Вводятся понятия крутизны. Рассматриваются аналитическое и численное представления передаточной характеристики транзистора, а так же методы анализа схем на биполярных транзисторах на примере каскада с общим эмиттером.
Третий модуль посвящён рассмотрению электрофизических свойств структуры металл-окисел-полупроводник, приведены зонные диаграммы материалов соответствующей структуры. Рассмотрены процессы обогащения, обеднения и инверсии поверхности полупроводника под управлением затвора, а так же вводится понятие порогового напряжения. Представлена структура и принцип работы МОП-транзисторов. Кроме того, рассматриваются вопросы, связанные с реализацией логических схем на полевых МОП-транзисторах, приведён анализ последовательных логических схем на основе триггеров.
Данный курс, главным образом, предназначен для студентов, обучающихся по программам подготовки специалистов в области микроэлектроники. В рамках данного курса рассматриваются процессы, происходящие в электронно-дырочных переходах, а также свойства базовых элементов интегральных схем: резисторов, диодов, биполярных и МОП-транзисторов. Данные вопросы играют ключевую роль при решении задач разработки и применения современных изделий электронной техники и, по сути, составляют основу полупроводниковой микроэлектроники.
Стоимость доступа к материалам курса за исключением ознакомительной части (включая тестовые материалы и возможность пройти экзамен с прокторингом и получить сертификат) составляет 3600 рублей. Для этого нужно пройти текущее тестирование не меньше чем на 60% и итоговый тест не меньше чем на 60%
Основная литература к курсу:
1. Маллер Р., Кейминс Т. Элементы интегральных микросхем: Пер. с англ. - М.: Мир, 1989. - 630 с., ил. ISBN 5-03-001100-5
2. П. Хоровиц, У. Хилл Искусство схемотехники: Пер. с англ. - в двух томах М.: Мир, 2020, ISBN 978-5-9518-0351-1
3. У.Титце, К. Шенк. Полупроводниковая схемотехника: Пер. с англ. - в двух томах: ДМК пресс, 2008, ISBN 978-5-97060-173-0
Дополнительная литература к курсу:
1. Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы. Изд. 9 2020. 480 с. ISBN 978-5-8114-0368-4.
2. Петросянц К. О., Козынко П. А., Рябов Н. И., Самбурский Л. М., Харитонов И. А. Электроника интегральных схем. Лабораторные работы и упражнения. Учебное пособие / Под общ. ред.: К. О. Петросянц. М. : Солон-Пресс, 2017.
3. Степаненко И.П. Основы микроэлектроники: Изд. 2-е перераб.: Лаборатория базовых знаний, 2001г. - 488с.
Изучение дисциплины базируется на следующих курсах: Математика (основы интегрального и дифференциального исчисления, векторный и тензорный анализ); Общая физика (курс общей физики в части электричества и магнетизма); Неорганическая химия; Теоретические основы специальности (базовые знания в области физики твердого тела или основ физики полупроводников): основы микроэлектроники.
Для освоения данной дисциплины необходимо: теорию работы и основные характеристики полупроводниковых приборов, их математические модели; уметь выполнять численные оценки электрофизических параметров микроэлектронных структур; владеть навыками математических расчетов с использованием компьютера.
МОДУЛЬ 1
Лекция 1. Введение. Электрофизические свойства полупроводников, металлов и диэлектриков. Закон действующих масс.
Лекция 2. Концентрация электронов и дырок в примесных полупроводниках. Подвижность носителей заряда. Удельное сопротивление легированного полупроводника. Зависимость подвижности носителей заряда от концентрации легирующей примеси и температуры.
Лекция 3. Зонные структуры материалов. Распределение Ферми-Дирака. Распределение электронов по энергетическим зонам кремния. Работа выхода и сродство к электрону.
Лекция 4. Полупроводниковый p-n переход. Баланс зарядов в равновесном p-n переходе. Электрические режимы p-n перехода. Граничные условия Шокли. Вольтамперная характеристика полупроводникового диода.
Лекция 5. Биполярные транзисторы. Виды биполярных транзисторов. Режимы работы биполярного транзистора. Равновесная и избыточная концентрация носителей заряда. Структура с длинной базой. Структура с короткой базой. Ток коллектора биполярного транзистора.
МОДУЛЬ 2
Лекция 6. Эффект Эрли. Рекомбинация и условие электронейтральности. Структура базы биполярного транзистора. Движение носителей заряда в базе биполярного транзистора в нормальном активном режиме. Составляющие тока базы биполярного транзистора.
Лекция 7. Передаточная характеристика биполярного транзистора. Аналитическое и численное представление передаточной характеристики. Крутизна биполярного транзистора. Входные и выходные характеристики биполярного транзистора. Аналитическое и численное описание выходных характеристик.
Лекция 8. Графический метод анализа транзисторных схем. Каскад с общим эмиттером. Температурная зависимость падения напряжения на эмиттерном переходе.
Лекция 9. Биполярный транзистор в режиме насыщения. Транзисторный человек. Каскад с общим эмиттером (применение модели транзисторного человека). Каскад с общим эмиттером в режиме насыщения. Передаточная характеристика каскада с общим эмиттером с учетом режима насыщения.
Лекция 10. Дифференциальный метод анализа транзисторных схем. Ток базы и ток коллектора как функции напряжений эмиттер-база и коллектор эмиттер. Ток коллектора в дифференциальной форме. Ток базы в дифференциальной форме.
МОДУЛЬ 3
Лекция 11. Структура металл-диэлектрик-полупроводник. Электрофизические свойства структуры металл-диэлектрик-полупроводник. Зонные диаграммы материалов МОП-структуры. Режим аккумуляции. Режим обеднения. Инверсный режим.
Лекция 12. Транзисторы на основе структуры Металл-Диэлектрик-Полупроводник. Структура и принципы работы. Режимы работы. Передаточная характеристика.
Лекция 13. Логические схемы на полевых МОП-транзисторах. Логические элементы «И», «ИЛИ», «НЕ».
Лекция 14. Комбинационные Логические Схемы. Полусумматор. Дешифратор. Мультиплексор. Демультиплексор.
Лекция 15. Устройства памяти и последовательные логические схемы на основе триггеров. RS – триггер. Типы триггеров.
В результате прохождения курса слушатель будет:
Знать:
Уметь:
Владеть:
язык курса
длительность курса
понадобится для освоения
для зачета в своем вузе
Кандидат технических наук
Должность: Ассистент отделения нанотехнологий в электронике, спинтронике и фотонике офиса образовательных программ (414) ИНТЭЛ НИЯУ МИФИ
Кандидат технических наук
Должность: Доцент отделения нанотехнологий в электронике, спинтронике и фотонике офиса образовательных программ НИЯУ МИФИ