up
  • Russian

    course language

  • 16 weeks

    course duration

  • от 6 до 11 часов в неделю

    needed to educate

  • 5 credit points

    for credit at your university

Курс входит в пакеты курсов (возможность приобрести доступ к нескольким курсам по сниженной стоимости):

Общая физика (полный курс)

 

Что такое физика и зачем она нужна? Некоторые люди никогда не задаются таким вопросом. Некоторые считают, что физика нужна исключительно для создания различных «девайсов», например холодильников или мобильных телефонов. И они в чем-то правы, ведь сказал же Оскар Уайльд, что «Комфорт – это единственное, что может нам дать цивилизация».

Для нас физика – это умение видеть и понимать окружающий мир, возможность творить то, о чем раньше даже и мечтать было сложно. Мы считаем, что для дальнейшего прогресса человечества необходимы ученые-физики, инженеры-физики и просто образованные люди. Мы готовы делиться нашими знаниями.

About

Курс «Электричество и магнетизм» рассчитан на студентов технических ВУЗов. Лекции читает доктор физико-математических наук, профессор Московского физико-технического института, заслуженный деятель науки Российской Федерации, Козел Станислав Миронович.

В курсе рассматриваются ключевые аспекты электричества, магнетизма и теории колебаний. Подробно объяснены такие важные понятия как поле диполя, метод изображений, электрическое поле в веществе, энергетический метод вычисления сил, теорема о циркуляции, магнитное поле в веществе, электромагнитная индукция, силы в магнитном поле, свободные колебания, метод комплексных амплитуд, спектральный анализ в линейных системах, уравнения Максвелла, электромагнитные волны в волноводах.

Для бесплатного просмотра доступны только видеолекции и тренировочные задания. Тесты на проверку откроются после оплаты сертификации. Стоимость сертификации составляет 3600 рублей.

Экзамус.

Уважаемые слушатели, Вы можете сдать экзамен с прокторингом, который будет проходить на курсе раз в 2-3 месяца. Рассылка о предстоящих экзаменах будет приходить Вам на почту заранее.

Ближайшие даты экзамена с 22 по 31 мая 2023 года.

Студентам МФТИ для получения бесплатного доступа к тестовым заданиям и экзамену необходимо написать на openedu@mipt.ru письмо с указанием названия курса, логина на openedu, и скриншотом личного кабинета, на котором виден статус обучения.

Format

Курс рассчитан на 16 недель (включая 2 проверочные недели и экзамен). Учебные недели включают лекции, физические демонстрации и семинары с разбором задач. Основные формулы и тезисы лекций представлены в виде кратких конспектов. Каждая учебная неделя содержит тест и 4 задачи для самостоятельного решения. Проверочная неделя включает тест и 5 задач. В конце курса у слушателя есть возможность решить дополнительную контрольную работу из трёх задач повышенной сложности с ограничением по времени.

Кроме того, данный курс включает 4 дополнительные недели: по желанию их также можно изучить (прохождение необязательно, задания не оцениваются).

Основная литература:

  1. Сивухин Д.В. Общий курс физики. Т. 3. – М.: Наука, 1996.
  2. Кингсеп А.С., Локшин Г.Р., Ольхов О.А. Курс общей физики. Т. 1.– М.: Физматлит, 2001.
  3. Кириченко Н.А. Электричество и магнетизм. М.: МФТИ, 2011.
  4. Дополнительная литература Фейнман Р.П. Фейнмановские лекции по физике. Выпуски 5, 6, 7. – М.: Мир, 1977.
  5. Парселл Э. Электричество и магнетизм. – М.: Наука, 1983.
  6. Горелик Г.С. Колебания и волны. – М.: Физматлит, 2006.
  7. Калашников С.Г. Электричество. – М.: Наука, 1997.
  8. Тамм И.Е. Основы теории электричества. – М.: Физматлит, 2003.

Requirements

Слушателям курса необходимо владеть знаниями по физике в объеме школьной программы, основами дифференциального и интегрального исчисления, основами векторного исчисления.

Необходимо иметь представление о ключевых понятиях электростатики и магнитостатики, таких как заряды, поля, принцип суперпозиции, уравнения Максвелла, записанные в статическом случае как внутри вещества, так и вне его, энергия электрического поля, энергетические подходы для вычисления сил, действующих на объекты, находящиеся электростатическом поле. Требуется представление о свойствах постоянного тока, в частности, законе Ома, правилах Кирхгофа и законе Джоуля-Ленца.

В курсе предполагается, что слушатели знакомы с законом Био-Савара-Лапласа и имеют представление о силе Лоренца и силе Ампера. Также необходимо владение основами векторного анализа, представление о понятиях градиента, дивергенции, ротора.

Course program

  1. Электрические заряды и электрическое поле. Закон сохранения заряда. Напряжённость электрического поля. Закон Кулона. Система единиц СГСЭ. Принцип суперпозиции. Электрическое поле диполя.
  2. Теорема Гаусса для электрического поля в вакууме в интегральной и дифференциальной формах. Её применение для нахождения электростатических полей.
  3. Потенциальный характер электростатического поля. Потенциал и разность потенциалов. Связь напряжённости поля с градиентом потенциала. Граничные условия на заряженной поверхности. Уравнения Пуассона и Лапласа. Единственность решения электростатической задачи. Метод «изображений».
  4. Электрическое поле в веществе. Проводники в электрическом поле. Поляризация диэлектриков. Вектор поляризации. Свободные и связанные заряды. Теорема Гаусса при наличии диэлектриков. Вектор электрической индукции. Поляризуемость и диэлектрическая проницаемость. Граничные условия на поверхности проводника и на границе двух диэлектриков.
  5. Электрическая ёмкость. Конденсаторы. Энергия электрического поля и её локализация в пространстве. Объёмная плотность энергии. Взаимная энергия зарядов. Энергия диполя в электрическом поле. Энергетический метод вычисления сил в электрическом поле.
  6. Постоянный ток. Сила и плотность тока. Закон Ома в интегральной и дифференциальной формах. Электродвижущая сила. Правила Кирхгофа. Работа и мощность постоянного тока. Закон Джоуля–Ленца. Токи в объёмных средах.
  7. Магнитное поле постоянного тока в вакууме. Вектор магнитной индукции. Сила Лоренца. Сила Ампера. Закон Био–Савара. Магнитное поле равномерно движущегося точечного заряда. Виток с током в магнитном поле. Магнитный момент тока.
  8. Теорема о циркуляции магнитного поля в вакууме и её применение к расчету магнитных полей. Магнитное поле тороидальной катушки и соленоида. Дифференциальная форма теоремы о циркуляции.
  9. Магнитное поле в веществе. Магнитная индукция и напряжённость поля. Вектор намагниченности. Токи проводимости и молекулярные токи. Теорема о циркуляции магнитного поля в веществе. Граничные условия на границе двух магнетиков. Применение теоремы о циркуляции для расчёта магнитных полей.
  10. Магнитные свойства вещества. Качественные представления о механизме намагничивания пара- и диамагнетиков. Понятие о ферромагнетиках. Гистерезис. Магнитные свойства сверхпроводников I рода.
  11. Электромагнитная индукция в движущихся и неподвижных проводниках. Закон электромагнитной индукции. Правило Ленца. Относительный характер электрического и магнитного полей. Преобразование →E и →B (при v << c).
  12. Коэффициенты само- и взаимоиндукции. Процесс установления тока в цепи, содержащей индуктивность. Теорема взаимности. Магнитная энергия и её локализация в пространстве. Объёмная плотность энергии. Энергетический метод вычисления сил в магнитном поле. Подъёмная сила электромагнита.
  13. Движение заряженных частиц в электрических и магнитных полях. Определение удельного заряда электрона.
  14. Квазистационарные процессы. Колебания в линейных системах. Колебательный контур. Свободные затухающие колебания. Коэффициент затухания, логарифмический декремент и добротность. Энергетический смысл добротности.
  15. Комплексная форма представления колебаний. Векторные диаграммы. Комплексное сопротивление (импеданс). Правила Кирхгофа для переменных токов. Работа и мощность переменного тока.
  16. Вынужденные колебания под действием синусоидальной силы. Амплитудная и фазовая характеристики. Резонанс. Процесс установления стационарных колебаний.
  17. Вынужденные колебания под действием несинусоидальной силы. Амплитудная и фазовая модуляции. Понятие о спектральном разложении. Спектр одиночного прямоугольного импульса и периодической последовательности импульсов. Соотношение неопределённостей.
  18. Спектральный анализ линейных систем. Колебательный контур как спектральный прибор. Частотная характеристика и импульсный отклик. Квадратичное детектирование модулированных сигналов.
  19. Параметрическое возбуждение колебаний. Понятие об автоколебаниях. Обратная связь. Условие самовозбуждения. Роль нелинейности.
  20. Электрические флуктуации. Тепловой шум, формула Найквиста. Дробовой шум, формула Шоттки (без вывода). Флуктуационный предел измерения слабых сигналов.
  21. Уравнения Максвелла в интегральной и дифференциальной форме. Граничные условия. Ток смещения. Материальные уравнения. Волновое уравнение. Электромагнитные волны в однородном диэлектрике, их поперечность и скорость распространения.
  22. Поток энергии в электромагнитной волне. Закон сохранения энергии и теорема Пойнтинга.
  23. Электромагнитная природа света. Монохроматические волны. Комплексная амплитуда. Уравнение Гельмгольца. Плоские и сферические волны Давление излучения. Электромагнитный импульс. Излучение диполя (без вывода).
  24. Понятие о линиях передачи энергии. Двухпроводная линия. Коэффициент стоячей волны (КСВ). Согласованная нагрузка.
  25. Электромагнитные волны в прямоугольном волноводе. Дисперсионное уравнение. Критическая частота. Понятие об объёмных резонаторах.
  26. Скин-эффект.
  27. Электромагнитные волны на границе раздела двух диэлектриков. Формулы Френеля. Явление Брюстера. Явление полного внутреннего отражения.
  28. Плазма. Экранировка, дебаевский радиус. Плазменная частота. Диэлектрическая проницаемость плазмы. Волны в плазме.

Education results

Базовые знания:

  1. физические явления и закономерности
  2. основные законы электричества
  3. границы применимости основных законов электричества

Умения:

  1. применять законы электричества к объяснению явлений
  2. обосновывать и получать основные уравнения электричества
  3. строить математические модели простейших явлений электричества

Навыки:

  1. работа со справочной и учебной литературой
  2. преобразование размерностей величин электричества
  3. применение общих законов физики для решения задач в области электричества

Отзывы о курсе

Овчинкин Владимир Александрович

Кандидат технических наук, доцент
Position: доцент кафедры общей физики МФТИ

Гавриков Андрей Владимирович

Доктор физико-математических наук
Position: профессор кафедры общей физики МФТИ, заместитель директора ОИВТ РАН

Козел Станислав Миронович

Доктор физико-математических наук, Профессор
Position: Профессор МФТИ