наверх

Теоретическая механика для инженеров и исследователей

Лекции представляют собой строгое, целостное и компактное изложение основных задач и методов теоретической механики.

По онлайн-курсу возможно получение сертификата.

О курсе

В курсе рассматриваются: кинематика точки и твёрдого тела (причём с разных точек зрения предлагается рассмотреть проблему ориентации твердого тела), классические задачи динамики механических систем и динамики твердого тела, элементы небесной механики, движение систем переменного состава, теория удара, дифференциальные уравнения аналитической динамики.

В курсе представлены все традиционные разделы теоретической механики, однако особое внимание уделено рассмотрению наиболее содержательных и ценных для теории и приложений разделов динамики и методов аналитической механики; статика изучается как раздел динамики, а в разделе кинематики подробно вводятся необходимые для раздела динамики понятия и математический аппарат.

Гантмахер Ф.Р. Лекции по аналитической механике. – 3-е изд. – М.: Физматлит, 2001.
Журавлёв В.Ф. Основы теоретической механики. – 2-е изд. – М.: Физматлит, 2001; 3-е изд. – М.: Физматлит, 2008.
Маркеев А.П. Теоретическая механика. – Москва – Ижевск: НИЦ «Регулярная и хаотическая динамика», 2007.

Требования

Курс рассчитан на студентов владеющих аппаратом аналитической геометрии и линейной алгебры в объеме программы первого курса технического вуза.

Программа курса

1. Кинематика точки
1.1. Задачи кинематики. Декартова система координат. Разложение вектора по ортонормированному базису. Радиус-вектор и координаты точки. Скорость и ускорение точки. Траектория движения.
1.2. Естественный трёхгранник. Разложение скорости и ускорения в осях естественного трехгранника (теорема Гюйгенса).
1.3. Криволинейные координаты точки, примеры: полярная, цилиндрическая и сферическая системы координат. Составляющие скорости и проекции ускорения на оси криволинейной системы координат.

2. Способы задания ориентации твердого тела
2.1. Твердое тело. Неподвижная и связанная с телом системы координат.
2.2. Ортогональные матрицы поворота и их свойства. Теорема Эйлера о конечном повороте.
2.3. Активная и пассивная точки зрения на ортогональное преобразование. Сложение поворотов.
2.4. Углы конечного вращения: углы Эйлера и "самолетные" углы. Выражение ортогональной матрицы через углы конечного вращения.

3. Пространственное движение твердого тела
3.1. Поступательное и вращательное движения твердого тела. Угловая скорость и угловое ускорение.
3.2. Распределение скоростей (формула Эйлера) и ускорений (формула Ривальса) точек твердого тела.
3.3. Кинематические инварианты. Кинематический винт. Мгновенная винтовая ось.

4. Плоскопараллельное движение
4.1. Понятие плоскопараллельного движения тела. Угловая скорость и угловое ускорение в случае плоскопараллельного движения. Мгновенный центр скоростей.

5. Сложное движение точки и твердого тела
5.1. Неподвижная и движущаяся системы координат. Абсолютное, относительное и переносное движения точки.
5.2. Теорема о сложении скоростей при сложном движении точки, относительная и переносная скорости точки. Теорема Кориолиса о сложении ускорений при сложном движении точки, относительное, переносное и кориолисово ускорения точки.
5.3. Абсолютные, относительные и переносные угловая скорость и угловое ускорение тела.

6. Движение твердого тела с неподвижной точкой (кватернионное изложение)
6.1. Понятие о комплексных и гиперкомплексных числах. Алгебра кватернионов. Кватернионное произведение. Сопряженный и обратный кватернион, норма и модуль.
6.2. Тригонометрическое представление единичного кватерниона. Кватернионный способ задания поворота тела. Теорема Эйлера о конечном повороте.
6.3. Связь между компонентами кватерниона в разных базисах. Сложение поворотов. Параметры Родрига-Гамильтона.

7. Экзаменационная работа

8. Основные понятия динамики.
8.1 Импульс, момент импульса (кинетический момент), кинетическая энергия.
8.2 Мощность сил, работа сил, потенциальная и полная энергия.
8.3 Центр масс (центр инерции) системы. Момент инерции системы относительно оси.
8.4 Моменты инерции относительно параллельных осей; теорема Гюйгенса–Штейнера.
8.5 Тензор и эллипсоид инерции. Главные оси инерции. Свойства осевых моментов инерции.
8.6 Вычисление момента импульса и кинетической энергии тела с помощью тензора инерции.

9. Основные теоремы динамики в инерциальных и неинерциальных системах отсчёта.
9.1 Теорема об изменении импульса системы в инерциальной системе отсчета. Теорема о движении центра масс.
9.2 Теорема об изменении момента импульса системы в инерциальной системе отсчета.
9.3 Теорема об изменении кинетической энергии системы в инерциальной системе отсчета.
9.4 Потенциальные, гироскопические и диссипативные силы.
9.5 Основные теоремы динамики в неинерциальных системах отсчета .

10. Движение твёрдого тела с неподвижной точкой по инерции.
10.1 Динамические уравнения Эйлера.
10.2 Случай Эйлера, первые интегралы динамических уравнений; перманентные вращения.
10.3 Интерпретации Пуансо и Маккулага.
10.4 Регулярная прецессия в случае динамической симметрии тела.

11. Движение тяжёлого твёрдого тела с неподвижной точкой.
11.1 Общая постановка задачи о движении тяжелого твердого тела вокруг.
неподвижной точки. Динамические уравнения Эйлера и их первые интегралы.
11.2 Качественный анализ движения твердого тела в случае Лагранжа.
11.3 Вынужденная регулярная прецессия динамически симметричного твердого тела.
11.4 Основная формула гироскопии.
11.5 Понятие об элементарной теории гироскопов.

12. Динамика точки в центральном поле.
12.1 Уравнение Бине.
12.2 Уравнение орбиты. Законы Кеплера.
12.3 Задача рассеяния.
12.4 Задача двух тел. Уравнения движения. Интеграл площадей, интеграл энергии, интеграл Лапласа.

13. Динамика систем переменного состава.
13.1 Основные понятия и теоремы об изменении основных динамических величин в системах переменного состава.
13.2 Движение материальной точки переменной массы.
13.3 Уравнения движения тела переменного состава.

14. Теория импульсивных движений.
14.1 Основные понятия и аксиомы теории импульсивных движений.
14.2 Теоремы об изменении основных динамических величин при импульсивном движении.
14.3 Импульсивное движение твёрдого тела.
14.4 Соударение двух твёрдых тел.
14.5 Теоремы Карно.

15. Контрольная работа

Результаты обучения

В результате освоения дисциплины обучающийся должен:

  • Знать:
    • основные понятия и теоремы механики и вытекающие из них методы изучения движения механических систем;
  • Уметь:
    • корректно формулировать задачи в терминах теоретической механики;
    • разрабатывать механико-математические модели, адекватно отражающие основные свойства рассматриваемых явлений;
    • применять полученные знания для решения соответствующих конкретных задач;
  • Владеть:
    • навыками решения классических задач теоретической механики и математики;
    • навыками исследования задач механики и построения механико-математических моделей, адекватно описывающих разнообразные механические явления;
    • навыками практического использования методов и принципов теоретической механики при решении задач: силового расчета, определения кинематических характеристик тел при различных способах задания движения, определения закона движения материальных тел и механических систем под действием сил;
    • навыками самостоятельно овладевать новой информацией в процессе производственной и научной деятельности, используя современные образовательные и информационные технологии;

Направления подготовки

01.00.00 Математика и механика

Поделиться

  • 9 недель

    длительность курса

  • 7 часов в неделю

    понадобится для освоения

  • 3 зачётных единицы

    для зачета в своем вузе

Притыкин Дмитрий Аркадьевич

Кандидат физико-математических наук, Доцент
Должность: Доцент кафедры теоретической механики МФТИ

Зараменских Ирина Евгеньевна

Кандидат физико-математических наук, Доцент
Должность: Доцент кафедры теоретической механики МФТИ

сертификат об окончании курса

Сертификат

Сертификат участника обычно выдается при достижении 60% от общего рейтинга при условии сдачи работ до жесткого дедлайна. Сертификат с отличием, как правило, выдается при достижении 90% от общего рейтинга при условии сдачи работ до мягкого дедлайна.

Похожие курсы