наверх

Towards quantum computer with superconducting qubits

Дату старта объявим позже

Дата начала записи на курс еще не объявлена

Добавить в избранное
  • Английский

    язык курса

  • 18 недель

    длительность курса

  • около 4 часов в неделю

    понадобится для освоения

  • 2 зачётных единицы

    для зачета в своем вузе

This course gives answers to the main questions of a beginner in the field of superconducting quantum computing. It starts with the basis of quantum gates, algorithms and physical implementations of qubits. Further the types of superconducting qubits are described as well as ways of their measurements. Our course contains a whole module giving detailed information on the equipment used for fabricating and measuring superconducting qubits. At the end of the course knowledge will be enough for designing a qubit and a simplest measurement setup for it.

О курсе

Online course covers key topics of superconducting qubit physics. The course contains not only necessary theoretical points but also a lot of unique practical information, which makes it useful both for an experimentalist and a theoretician. The online course is oriented on master and PhD students starting work on their thesis in a qubit laboratory. It starts with discussion on quantum gates, algorithms and physical implementations of qubits focusing on   superconducting qubits in particular. The types of superconducting qubits are described as well as ways of their measurements. A separate module of the online course gives detailed information about the equipment one might use in order to fabricate and measure superconducting qubits.

Формат

The course includes video lectures lasting 6-10 minutes.

Papers:

1.  Devoret, Michel, Girvin, Steven, and Schoelkopf, R., Circuit-qed: How strong can the coupling between a josephson junction atom and a transmission line resonator be? Annalen der Physik, 16, 767–779 (2007). 

2. DiCarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., and Schoelkopf, R.J., Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature, 467, 574–578 (2010). 

3. Paik, Hanhee, Schuster, D. I., Bishop, Lev S., Kirchmair, G., Catelani, G., Sears, A. P., Johnson, B. R., Reagor, M. J., Frunzio, L., Glazman, L. I., Girvin, S. M.,Devoret, M. H., and Schoelkopf, R. J. Observation of high coherence in josephson junction qubits measured in a three-dimensional circuit qed architecture. Phys. Rev. Lett., 107, 240501 (2011). 

4. F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A.P. Sears, D. Hover, D. Rosenberg, G. Samach, T.J. Gudmundsen, J.L. Yoder, T.P. Orlando, J. Clarke, A.J. Kerman, W.D. Oliver, The Flux Qubit Revisited to Enhance Coherence and Reproducibility. Nature Communications 7, 12964 (2016) 

5. C. Wang, C. Axline, Y. Gao, T. Brecht, Y. Chu, L. Frunzio, M. Devoret, R. Schoelkopf. Surface Participation and Dielectric Loss in Superconducting Qubits, Applied Physics Letters, 107, 162601 (2015)

 

Books and reviews:

1.  Devoret et al, Quantum Machines: Measurement and Control of Engineered Quantum Systems 

2. David M. Pozar, Microwave Engineering

3. Michael Tinkham, Introduction to Superconductivity

4. Isaac Chuang and Michael Nielsen, Quantum Computation and Quantum Information

5. Claude Cohen-Tannoudji, Bernard Diu, Frank Laloe, Quantum Mechanics

6. Philip Krantz et al, A Quantum Engineer's Guide to Superconducting Qubits

Результаты обучения

Upon completion of the course, students will develop the following competences:

  • Understending of Bloch sphere

  • Knowing of qubit gates

  • Understanding of quantum algorithms

  • Knowing of superconductors used for qubits making

  • Understanding of the JJ role in superconducting qubits

  • Understanding of the dissipation and decoherence effect

  • Understanding of lithography basis

  • Understanding of JJ fabrication process

  • Knowing working principle of a dilution refrigerator

  • Knowing of key microwave equipment for a qubit lab

  • Understanding of the difference between charge, phase and flux qubits

  • Knowing pros and cons of a transmon

  • Knowing pros and cons of a fluxonium

  • Being able to derive Jaynes-Cummings Hamiltonian

  • Understanding of the dispersive measurement

  • Understanding how to build a qubit measurement setup

Формируемые компетенции

Universal competence (УК-1) the ability to critically analyze and evaluate contemporary scientific achievements, generate new ideas when solving research and practical tasks, including in interdisciplinary fields 

General professional competence (ОПК-1) the ability to independently conduct scientific research in the relevant professional field using modern research methods, information  and communication technologies

Направления подготовки

Ustinov Alexey

D.Sc. Professor
Должность: Head of the laboratory

Maleeva Nataliya

PhD
Должность: Researcher