наверх

Электромагнетизм

Запись на курс закрыта
Подпишитесь на новости и узнайте дату следующего запуска
Добавить в избранное
  • Русский

    язык курса

  • 15 недель

    длительность курса

  • 6 зачётных единиц

    для зачета в своем вузе

О курсе

Курс «Электромагнетизм» является разделом курса общей физики, в котором излагаются систематизированные знания об основных понятиях и законах электромагнетизма как обобщений опытных фактов, выраженных в математической форме. Изучаются и демонстрируются основополагающие эксперименты, лежащие в основе фундаментальных законов электричества, магнетизма и электродинамики. Разбираются теоретические модели взаимодействия электрических и магнитных полей с веществом и анализируются области их применимости. Разъясняются современные технологии, в основе которых лежат законы электромагнетизма. Дисциплина вырабатывает у студентов основы естественнонаучного мировоззрения и является базой для дальнейшего изучения общепрофессиональных и специальных дисциплин.

Формат

Форма обучения заочная (дистанционная). Еженедельные занятия будут включать просмотр тематических видеолекций, снабженных видеозаписями лекционных экспериментов, и выполнение тестовых заданий с автоматизированной проверкой результатов. Важным элементом изучения дисциплины является самостоятельное решение физических задач. Решение должно будет содержать строгие и логически верные рассуждения, приводящие к верному ответу.

Требования

Курс рассчитан на бакалавров 1 года обучения. Требуется знание физики и математики в объёме средней школы (11 классов).

Программа курса

Лекция 1. Электромагнитное взаимодействие и его место среди других взаимодействий в природе. Развитие физики электричества в работах М.В.Ломоносова. Электрический заряд. Микроскопические носители заряда. Опыт Милликена. Закон сохранения электрического заряда. Электростатика. Закон Кулона и его полевая трактовка. Вектор напряженности электрического поля. Принцип суперпозиции электрических полей.

Лекция 2. Поток вектора напряженности электрического поля. Электростатическая теорема Остроградского–Гаусса, ее представление в дифференциальной форме. Потенциальность электростатического поля. Потенциал. Нормировка потенциала. Связь вектора напряженности электростатического поля и потенциала. Работа сил электростатического поля. Потенциал системы зарядов.

Лекция 3. Циркуляция вектора напряженности электрического поля. Теорема о циркуляции, ее представление в дифференциальной форме. Уравнения Пуассона и Лапласа. Электрический диполь. Потенциал и напряженность поля диполя.

Лекция 4. Проводники в электростатическом поле. Электростатическая индукция. Напряженность поля у поверхности и внутри проводника. Распределение заряда по поверхности проводника. Электростатическая защита. Связь между зарядом и потенциалом проводника. Электроемкость. Конденсаторы. Емкость плоского, сферического и цилиндрического конденсаторов. Проводящий шар в однородном электростатическом поле.

Лекция 5. Диэлектрики. Свободные и связанные заряды. Вектор поляризации. Связь вектора поляризации со связанными зарядами. Вектор электрической индукции в диэлектрике. Диэлектрическая восприимчивость и диэлектрическая проницаемость и вещества. Материальное уравнение для векторов электрического поля. Теорема Остроградского – Гаусса для диэлектриков. Ее дифференциальная форма. Граничные условия для векторов напряженности и электрической индукции. Диэлектрический шар в однородном электрическом поле.

Лекция 6. Энергия системы электрических зарядов. Энергия взаимодействия и собственная энергия. Энергия электростатического поля и ее объемная плотность. Энергия электрического диполя во внешнем поле. Пондеромоторные силы в электрическом поле и методы их вычислений. Связь пондеромоторных сил с энергией системы зарядов.

Лекция 7. Электронная теория поляризации диэлектриков. Локальное поле. Неполярные диэлектрики. Формула Клаузиуса – Моссотти. Полярные диэлектрики. Функция Ланжевена. Поляризация ионных кристаллов. Электрические свойства кристаллов. Пироэлектрики. Пьезоэлектрики. Прямой и обратный пьезоэлектрический эффект и их применение. Сегнетоэлектрики. Доменная структура сегнетоэлектриков. Гистерезис. Точка Кюри. Применение сегнетоэлектриков.

Лекция 8. Постоянный электрический ток. Сила и плотность тока. Линии тока. Электрическое поле в проводнике с током и его источники. Уравнение непрерывности. Условие стационарности тока. Электрическое напряжение. Закон Ома для участка цепи. Электросопротивление. Закон Ома в дифференциальной форме. Удельная электропроводность вещества.

Лекция 9. Токи в сплошных средах. Заземление. Работа и мощность постоянного тока. Закон Джоуля – Ленца и его дифференциальная форма. Сторонние силы. Электродвижущая сила. Закон Ома для замкнутой цепи. Разветвленные цепи. Правила Кирхгофа. Примеры их применения.

Лекция 10. Магнитостатика. Взаимодействие токов. Элемент тока. Закон Био – Савара – Лапласа и его полевая трактовка. Вектор индукции магнитного поля. Действие магнитного поля на ток. Закон Ампера. Теорема о циркуляции вектора индукции магнитного поля. Дифференциальная форма теоремы о циркуляции. Вихревой характер магнитного поля. Уравнение div B = 0. Понятие о векторном потенциале. Релятивистская природа магнитных взаимодействий.

Лекция 11. Элементарный ток и его магнитный момент. Магнитное поле элементарного тока. Элементарный ток в магнитном поле. Магнитное поле движущегося заряда. Взаимодействие движущихся зарядов. Сила Лоренца. Эффект Холла.

Лекция 12. Поток вектора магнитной индукции (магнитный поток). Коэффициент самоиндукции (индуктивность). Коэффициент взаимной индукции двух контуров. Потенциальная функция тока. Силы, действующие на контур с током. Взаимодействие двух контуров с током.

Лекция 13. Электромагнитная индукция. Закон электромагнитной индукции Фарадея и его дифференциальная форма. Правило Ленца. 

Лекция 14. Магнетики. Понятие о молекулярных токах. Вектор намагниченности вещества и его связь с молекулярными токами. Вектор напряженности магнитного поля. 

Лекция 15. Классификация магнетиков. Диамагнетики, парамагнетики и ферромагнетики. Классическое описание диамагнетизма. Ларморова прецессия. 

Лекция 16. Ферромагнетики. Спонтанная намагниченность и температура Кюри. Доменная структура. Гистерезис намагничивания, кривая Столетова. 

Лекция 17. Квазистационарные токи. Условия квазистационарности. Переходные процессы в RC- и LC-цепях. 

Лекция 18. Вынужденные колебания в контуре. Процесс установления вынужденных колебаний. 

Лекция 19. Резонанс напряжений. Напряжения и токи при резонансе. 

Лекция 20. Техническое применение переменных токов. Генераторы и электродвигатели. Трехфазный ток. 

Лекция 21. Высокочастотные токи. Скин-эффект. Толщина скин-слоя. 

Лекция 22. Классическая теория электронной проводимости Друде – Лоренца. 

Лекция 23. Полупроводники. 

Результаты обучения

В результате освоения дисциплины студент должен знать основные явления электричества и магнетизма, методы их теоретического описания и способы их использования в физических приборах, уметь решать задачи из раздела «Электромагнетизм» раздела курса общей физики.

Формируемые компетенции

Компетенции, необходимые для освоения дисциплины: ОНК-1, ПК-1; Компетенции, формируемые в результате освоения дисциплины: ПК-2; ОНК-5.

Направления подготовки

Отзывы о курсе

Поляков Петр Александрович

Доктор физико-математических наук
Должность: профессор кафедры общей физики физического факультета МГУ имени М.В. Ломоносова

Сертификат

По данному курсу возможно получение сертификата.

Сертификат участника обычно выдается при достижении 60% от общего рейтинга при условии сдачи работ до жесткого дедлайна. Сертификат с отличием, как правило, выдается при достижении 90% от общего рейтинга при условии сдачи работ до мягкого дедлайна.

Похожие курсы