up

Смешанные линейные модели

Start date will be announced later

Start date for course enrollment has not been announced yet

  • Russian

    course language

  • 5 weeks

    course duration

  • от 6 до 7 часов в неделю

    needed to educate

  • 1 credit points

    for credit at your university

Курс реализуется в разделе "Программы" — Смешанные линейные модели.

Этот курс поможет научиться строить модели со случайными факторами для величин с разными типами распределений. Чтобы легче осваивать материалы курса, вам пригодятся базовые представления о линейных моделях (общих и обобщенных), базовые знания R и умение создавать простейшие .html документы при помощи rmarkdown и knitr.

About

Oдним из условий применимости обычных линейных моделей является независимость наблюдений друг от друга, на основе которых подбирается модель. Однако на  практике часто встречаются ситуации, когда дизайн сбора материала таков, что нарушение этого условия неизбежно. Представьте, что вы решили построить модель, описывающую связь успеваемости по физкультуре и величины IQ теста у студентов. Для решения этой задачи вы сделали многочисленные выборки в нескольких институтах. Можно ли объединить такие данные в один анализ, построенной по традиционной схеме? Конечно нет. Студенты в каждом вузе могут быть в чем-то сходными друг с другом. Даже характер связи между изучаемыми величинами может быть несколько разным. Такого рода данные, в которых присутствуют внутригрупповые корреляции, стоит анализировать при помощи смешанных линейных моделей. Мы покажем, что некоторые предикторы стоит включать в модель в качестве так называемых “случайных факторов”. Вы узнаете, что случайные факторы могут быть иерархически соподчинены. Мы обсудим, как такие смешанные модели могут быть построены для зависимых переменных подчиняющихся разным типам распределений. Кроме того, мы покажем, что случайная часть модели может быть устроена еще сложнее - в ней может быть компонент, моделирующий поведение дисперсии в ответ на влияние ковариаты. В конце курса вас ждет проект, в котором вы сможете потренироваться в построении смешанных моделей, выбрав один из нескольких датасетов. На основе анализа этих данных вы сможете создать отчет, выдержанный в традициях воспроизводимого исследования.

 

Format

Форма обучения заочная (дистанционная). Еженедельные занятия будут включать просмотр тематических видеолекций, изучение дополнительных материалов и выполнение тестовых заданий с автоматизированной проверкой результатов, тестирование по пройденному материалу.

Requirements

Чтобы легче осваивать материалы курса, вам пригодятся:

  • базовые представления о линейных моделях (общих и обобщенных);
  • базовые знания R;
  • умение создавать простейшие .html документы при помощи rmarkdown и knitr.

Рекомендуется прежде освоить предыдущие курсы программы "Просто о статистике (с использованием R)".

Course program

Курс состоит из четырех модулей:

1. Знакомство со смешанными линейными моделями

В этом модуле вы сделаете первый шаг в мир смешанных линейных моделей. Вы познакомитесь с понятием случайного фактора. Вы увидите примеры дизайнов сбора данных, когда использование таких факторов становится необходимым и поймете, что происходит  с моделями, если такие факторы не учитывать или учитывать нерационально.  Вам предстоит построить смешанную модель, предполагающую, что переменная-отклик подчиняется нормальному распределению. На этом примере вы научитесь трактовать результаты построения смешанных моделей и визуализировать их. Вы увидите, что подходы к работе со смешанными моделями существенно отличаются от более привычных нам форм регрессионного и дисперсионного анализа.  

2. Моделирование структуры дисперсии в смешанных моделях

Одним из ключевых ограничений при работе с моделями, основанными на нормальном распределении переменной отклика, является отсутствие гетероскедастичности. Тем не менее признаки неравенства дисперсии для разных значений ковариат выявляются очень часто. Если гетерогенность дисперсий не учитывать, это может привести к неадекватной трактовке результатов подбора модели. В этом модуле мы рассмотрим один из возможных подходов к решению этой проблемы - моделирование структуры дисперсии. Вы познакомитесь с нескольким способами моделирования связи между варьированием переменной отклика и непрерывными или дискретными  предикторами, которые называются ковариаты дисперсии. Мы рассмотрим как можно ввести такой компонент, как в простую, так и смешанную линейную модель. 

3. Смешанные линейные модели для счетных данных

В этом модуле вы научитесь моделировать поведение счетных величин при помощи обобщенных смешанных линейных моделей (GLMM). В основе этих моделей будет лежать распределение Пуассона или отрицательное биномиальное распределение. Мы вместе вспомним, что такое связывающей функция, и каким образом она обеспечивает связь между предиктором и счетной зависимой переменной. GLMM для счетных данных требуют, чтобы связь среднего и дисперсии в данных соответствовала ожидаемой для выбранного распределения. Вы научитесь оценивать степень избыточности дисперсии и бороться с ней, если она присутствует.  Мы встретим и обсудим случаи, когда функции языка R не будут способны подобрать модель по техническим причинам, и рассмотрим некоторые методы устранения таких проблем. Наконец, мы обсудим особенности трактовки результатов GLMM: интерпретацию коэффициентов моделей, основанных на распределениях для счетных данных, методы тестирования гипотез, пост-хок тесты и способы визуализации результатов.

4. Смешанные линейные модели для бинарных данных

В последнем модуле этой специализации мы применим весь имеющийся нашем арсенале набор средств для построения модели, в которой зависимая переменная имеет бинарную природу. Мы повторим принципы работы с бинарными переменными: переход от вероятностей к шансам и логитам. Далее мы обсудим материал, в котором несколько случайных факторов находятся в иерархическом соподчинении. На примере модели для этих данных мы рассмотрим разнообразные подводные камни, которые имеются при работе со смешанными моделям с бинарной переменной-откликом.

Education directions

Knowledge

Вы научитесь:

  • распознавать случайные факторы и понимать особенности моделирования группирующих факторов при помощи фиксированных и случайных эффектов;
  • записывать смешанную модель со случайным отрезком и/или случайным углом наклона в виде уравнения и с использованием функций специализированного пакета R;
  • рассчитывать и интерпретировать коэффициенты внутриклассовой корреляции;
  • проводить диагностику обобщенных смешанных линейных моделей с нормальным распределением отклика;
  • корректно применять методы тестирования гипотез в смешанных моделях и интерпретировать результаты;
  • визуализировать смешанную модель с учетом и без учета влияния случайного фактора;
  • описывать связь дисперсии с разным типами ковариат дисперсии;
  • вводить элементы, моделирующие структуру дисперсии в простые и смешанные линейные модели, основанные на нормальном распределении переменной отклика;
  •  распознавать признаки гетероскедастичности;
  • подбирать модель с оптимальной структурой дисперсии с использованием информационных критериев;
  • трактовать модели, включающие моделирование связи дисперсии с ковариатой;
  • записывать обобщенную смешанную линейную модель для счетных величин;
  • обнаруживать признаки избыточности дисперсии;
  • подбирать модели, основанные на распределении Пуассона и отрицательном биномиальном распределении;
  • интерпретировать коэффициенты моделей, основанных на счетных данных, с учетом функции связи;
  • проводить пост-хок тесты для обобщенных смешанных моделей;
  • визуализировать обобщенные смешанные модели для счетных величин;
  • записывать обобщенную смешанную линейную модель с бинарной переменной-откликом;
  • изменять настройки подбора модели в случае если стандартные параметры приводят к сбоям;
  • обнаруживать признаки избыточности дисперсии в моделях с бинарным откликом;
  • визуализировать обобщенные смешанные модели для бинарных данных;
  • создавать отчеты в формате html при помощи rmarkdown/knitr об анализе данных с помощью обобщенной смешанной линейной модели.

Хайтов Вадим Михайлович

Кандидат биологических наук
Position: доцент

Варфоломеева Марина Александровна

PhD СПбГУ
Position: старший преподаватель кафедры зоологии беспозвоночных

Similar courses