наверх

Математический анализ. Теория функций одной переменной

Курс охватывает классический материал по математическому анализу, изучающийся на первом курсе университета в первом семестре.

видеоролик о программе
Программа уже началась
5 дней
До конца записи
  • Дополнительное профессиональное образование

    уровень образования

  • Русский

    язык программы

  • 16 недель

    длительность программы

  • 2 зачётных единицы

    72 академических часа

  • Стоимость 9 640 Р

    за обучение

О программе

Курс ориентирован на бакалавров и магистров, специализирующихся по математическим, экономическим или естественнонаучным дисциплинам, а также на учителей математики средних школ и на преподавателей вузов. Будет также полезен школьникам, углублённо занимающимся математикой.
Построение курса традиционно. Курс охватывает классический материал по математическому анализу, изучающийся на первом курсе университета в первом семестре. Будут представлены разделы «Элементы теории множеств и вещественные числа», «Теория числовых последовательностей», «Предел и непрерывность функции», «Дифференцируемость функции», «Приложения дифференцируемости». Мы познакомимся с понятием множества, дадим строгое определение вещественного числа и изучим свойства вещественных чисел. Затем поговорим о числовых последовательностях и их свойствах. Это позволит рассмотреть понятие числовой функции, хорошо знакомое школьникам, на новом, более строгом уровне. Мы введём понятие предела и непрерывности функции, обсудим свойства непрерывных функций и их применение для решения задач.
Во второй части курса мы дадим определение производной и дифференцируемости функции одной переменной и изучим свойства дифференцируемых функций. Это позволит научиться решать такие важные прикладные задачи, как приближённое вычисление значений функции и решение уравнений, вычисление пределов, исследование свойств функции и построение её графика.

Формат

Форма обучения заочная (дистанционная).
Еженедельные занятия будут включать просмотр тематических видеолекций и выполнение тестовых заданий с автоматизированной проверкой результатов.
Важным элементом изучения дисциплины является самостоятельное решение вычислительных задач и задач на доказательство. Решение должно будет содержать строгие и логически верные рассуждения, приводящие к верному ответу (в случае задачи на вычисление) или полностью доказывающие необходимое утверждение (для теоретических задач).

Программа обучения

Лекция 1. Элементы теории множеств.
Лекция 2. Понятие вещественного числа. Точные грани числовых множеств.
Лекция 3. Арифметические операции над вещественными числами. Свойства вещественных чисел.
Лекция 4. Числовые последовательности и их свойства.
Лекция 5. Монотонные последовательности. Критерий Коши сходимости последовательности.
Лекция 6. Понятие функции одной переменной. Предел функции. Бесконечно малые и бесконечно большие функции.
Лекция 7. Непрерывность функции. Классификация точек разрыва. Локальные и глобальные свойства непрерывных функций.
Лекция 8. Монотонные функции. Обратная функция.
Лекция 9. Простейшие элементарные функции и их свойства: показательная, логарифмическая и степенная функции.
Лекция 10. Тригонометрические и обратные тригонометрические функции. Замечательные пределы. Равномерная непрерывность функции.
Лекция 11. Понятие производной и дифференциала. Геометрический смысл производной. Правила дифференцирования.
Лекция 12. Производные основных элементарных функций. Дифференциал функции.
Лекция 13. Производные и дифференциалы высших порядков. Формула Лейбница. Производные параметрически заданных функций.
Лекция 14. Основные свойства дифференцируемых функций. Теоремы Ролля и Лагранжа.
Лекция 15. Теорема Коши. Первое правило Лопиталя раскрытия неопределённостей.
Лекция 16. Второе правило Лопиталя раскрытия неопределённостей. Формула Тейлора с остаточным членом в форме Пеано.
Лекция 17. Формула Тейлора с остаточным членом в общей форме, в форме Лагранжа и Коши. Разложение по формуле Маклорена основных элементарных функций. Приложения формулы Тейлора.
Лекция 18. Достаточные условия экстремума. Асимптоты графика функции. Выпуклость.
Лекция 19. Точки перегиба. Общая схема исследования функции. Примеры построения графиков.

Садовничая Инна Викторовна

Доктор физико-математических наук, доцент МГУ имени М.В.Ломоносова
Должность: доцент кафедры общей математики факультета вычислительной математики и кибернетики МГУ имени М.В.Ломоносова

Удостоверение о повышении квалификации

Лица, имеющие среднее профессиональное и/или высшее образование, могут получить удостоверение о повышении квалификации МГУ имени М.В.Ломоносова.

Курсы в программе