course language
course duration
needed to educate
for credit at your university
Машинное обучение, его применение и совершенствование — это то, над чем трудятся многие лучшие умы современности. В этом курсе расскажем и наглядно покажем современные подходы к статистической обработке данных и построению моделей в машинном обучении (МО).
Идея этого курса — пролить свет на основные задачи и методы машинного обучения. Как мы покажем, многие задачи машинного обучения — это не что-то из области фантастики. Это задачи, с которыми сталкивается каждый из нас даже просто-напросто в быту. В то же время, способы решения этих задач, конечно, основаны на математике, которую мы постараемся изложить в максимально понятной и доступной форме.
В состав курса входят видео-лекциии и упражнения. Длительность курса составляет 11 недель. Трудоемкость курса – 4 зачетных единицы. Средняя недельная нагрузка на обучающегося – 13 часов.
Литература:
1. Флах, П. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных [Электронный ресурс] / П. Флах. — Электрон. дан. — Москва : ДМК Пресс, 2015. — 400 с. — Режим доступа: https://e.lanbook.com/book/69955. — Загл. с экрана.
2. Анализ данных : учебник для академического бакалавриата / В. С. Мхитарян [и др.] ; под ред. В. С. Мхитаряна. — М. : Издательство Юрайт, 2018. — 490 с. — (Серия : Бакалавр. Академический курс). — ISBN 978-5-534-00616-2. — Режим доступа : www.biblio-online.ru/book/CC38E97A-CCE5-4470-90F1-3B6D35ACC0B4.
3. Миркин, Б. Г. Введение в анализ данных : учебник и практикум / Б. Г. Миркин. — М. : Издательство Юрайт, 2018. — 174 с. — (Серия : Авторский учебник). — ISBN 978-5-9916-5009-0. — Режим доступа : www.biblio-online.ru/book/46A41F93-BC46-401C-A30E-27C0FB60B9DE.
Сетевые ресурсы:
1. http://www.machinelearning.ru/ - Профессиональный информационно-аналитический ресурс, посвященный машинному обучению, распознаванию образов и интеллектуальному анализу данных
Для успешного освоения курса необходимы базовые навыки работы с компьютером и сетью Интернет.
В курсе рассматриваются следующие темы:
course language
course duration
needed to educate
for credit at your university
К. ф.-м. н., доцент
Position: Директор высшей школы цифровой культуры Университета ИТМО
К.ф.-м.н.
Position: доцент факультета систем управления и робототехники, доцент высшей школы цифровой культуры Университета ИТМО
К.т.н.
Position: доцент высшей школы цифровой культуры Университета ИТМО
К.т.н.
Position: доцент высшей школы цифровой культуры Университета ИТМО
Position: преподаватель высшей школы цифровой культуры Университета ИТМО
По данному курсу возможно получение сертификата.
A participant certificate is usually issued upon reaching 60 % of the overall rating, subject to the delivery of works before a hard deadline. The honors certificate is usually issued upon reaching 90 % of the overall rating, subject to the delivery of the work before the soft deadline.