up

Машинное обучение

8 October 2020 - 31 January 2021 г.
The course has already started
60 days
До конца записи
  • 10 недели

    длительность курса

  • от 5 до 6 часов в неделю

    понадобится для освоения

  • 2 зачётных единицы

    для зачета в своем вузе

Машинное обучение – раздел искусственного интеллекта, изучающий методы построения моделей и алгоритмов, способных обучаться. Методы машинного обучения используются при решении широкого круга прикладных задач, для которых разработка явного алгоритма решения затруднительна или невозможна. И этот круг задач постоянно расширяется. Повсеместная информатизация приводит к накоплению огромных объёмов данных в науке, производстве, бизнесе, транспорте, здравоохранении.

Курс «Машинное обучение» посвящен изучению одного из наиболее популярных разделов машинного обучения – машинного обучения с учителем. Приводятся краткая история и парадигмы машинного обучения, основные принципы машинного обучения с учителем, рассматриваются постановки задач регрессии и классификации, используемые для их решения модели, методы обучения и оценки качества  обученных моделей, рассматриваются особенности организации процесса обучения с учителем и применения методов машинного обучения для решения практических задач. Изложение ведется строгим математическим языком, сопровождается множеством формул и математических выкладок. Для изучения данного курса требуются знания университетских курсов математического анализа, линейной алгебры, теории вероятностей и математической статистики. Желательны базовые знания методов оптимизации и прикладного статистического анализа данных.

Цель курса состоит в получении и закреплении теоретических и практических знаний, необходимых для решения прикладных задач машинного обучения с учителем.

Курс ориентирован на студентов и аспирантов, обучающихся по направлению Прикладная математика и информатика, а также на исследователей, интересующиеся наукой о данных и применяющих машинное обучение и статистические методы в своей научной и практической деятельности.

О курсе

В курсе изучаются математические основы машинного обучения. Основное внимание уделяется обучению с учителем и решаемые с его помощью задачи: регрессия и классификация данных. Рассматриваются принципы организации машинного с учителем, методы обучения и оценки обобщающей способности обученных моделей, приводятся практические рекомендации при построении моделей машинного обучения с учителем.

Формат

Четыре последовательно связанных модуля (наименования есть в программе курса), в каждом модуле от 4 до 8 уроков (лекций), контрольные вопросы, зачетные материалы в электронной форме. 

Курс является двуязычным. Материал подается в основном на английском языке с русскими субтитрами.

1. Alpaydin, E. (2014). Introduction to machine learning. MIT press.

2. Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press.

3. Raschka, S. (2015). Python machine learning. Packt Publishing Ltd.

4. J. Gareth, et al. An introduction to statistical learning. New York: Springer, 2013.

5. Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

6. Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis (Vol. 821). John Wiley & Sons.

7. Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). (2013). Machine learning: An artificial intelligence approach. Springer Science & Business Media.

8. Vapnik, Vladimir. The nature of statistical learning theory. Springer science & business media, 2013.

9. Hansen, B. E. (2009). Lecture notes on nonparametrics. Lecture notes.

Требования

Знание английского языка на уровне не ниже Intermediate.

Программа курса

Module 1. Introduction.

Lesson 1. What is Machine Learning?

Lesson 2. Machine Learning and Data Science.

Lesson 3. Machine Learning Milestones.

Lesson 4. Machine Learning Pipeline.

Lesson 5. Supervised and unsupervised learning.

Lesson 6. Other machine learning paradigms.

 

Module 2. Supervised Learning. Basic principles.

Lesson 1. Inductive bias and generalization.

Lesson 2. Loss function and empirical risk.

Lesson 3. Cross-validation techniques.

Lesson 4. Regression.

 

Module 3. Supervised Learning. Classification Problem.

Lesson 1. Loss functions in classification.

Lesson 2. Statistical view to empirical risk minimization.

Lesson 3. Confusion matrix based measures.

Lesson 4. ROC curve.

Lesson 5. PR curve.

Lesson 6. ECOC method.

Lesson 7. Multiclass performance measures.

 

Module 4. Bayesian Classification.

Lesson 1. Bayesian decision rule.

Lesson 2. Density estimation in Bayesian classification.

Lesson 3. Normal Bayes classifier.

Lesson 4. Normal Bayes classifier with shared covariance matrix.

Lesson 5. 2-D Normal Bayesian classification.

Lesson 6. Bayes classifier for discrete features.

Lesson 7. Non-parametric density estimation and kernel functions.

Lesson 8. Kernel density estimation.

Результаты обучения

В результате успешного прохождения курса у вас сложится понимание того, что такое машинное обучение, для решения каких задач и в каких случаях его следует применять, в чем его преимущества и особенности. Вы узнаете о том, как устроены  модели машинного обучения с учителем и как их использовать для решения задач классификации и регрессии, как работают алгоритмы обучения и что характеризуют их параметры, сможете осмысленно сконструировать модели машинного обучения, обучить их на имеющихся выборках данных и оценить их качество.

Знания

  • Основные парадигмы машинного обучения
  • Модели и методы машинного обучения с учителем
  • Методы оценки качества моделей машинного обучения

Умения

  • Применять методы машинного обучения для решения задач классификации и регрессии
  • Оценивать качество моделей машинного обучения

Навыки

  • Владеть терминологией машинного обучения
  • Владеть инструментальными средствами для построения моделей машинного обучения с учителем

Трофимов Александр Геннадьевич

К.н.т., доцент
Должность: доцент НИЯУ МИФИ

Похожие курсы