язык курса
длительность курса
понадобится для освоения
для зачета в своем вузе
Уважаемые слушатели, некоторые материалы данного курса доступны для ознакомительного просмотра. Чтобы получить доступ ко всем материалам курса, необходимо оплатить доступ к материалам.
Курс «Машинное обучение: основы» направлен на практическое знакомство слушателей с базовыми методами машинного обучения и анализа данных. Он поможет освоить классы и методы основных решаемых на сегодняшний день задач машинного обучения и его приложений в области искусственного интеллекта.
Данный курс может быть полезен слушателям, которые активно интересуются современными тенденциями в области машинного обучения, анализа данных и искусственного интеллекта, имеют некоторое представление в данной области и желают приложить имеющиеся знания на практике. Он позволит составить четкое понимание предметной области, разобраться в популярных классах решаемых задач, используемых методах решения, а также областях приложения результатов.
Каждый модуль курса включает видеолекции, презентации, листинги используемого кода, ссылки на рекомендованные источники по теме и другие материалы. Для формирования практических навыков используются не только тестовые задания, но и наборы данных и кейсы.
В результате освоения онлайн-курса обучающиеся смогут произвести базовые операции по анализу набора данных и решению некоторой задачи машинного обучения. В рамках подготовки данных к обучению слушатели научатся понимать и анализировать их, а также идентифицировать потенциальные некорректности. Также обучающиеся смогут решить с исходным набором поставленные задачи регрессии, классификации, кластеризации разными методами и сравнить качество полученных решений. Этот курс совместно с курсом по основам искусственного интеллекта сформирует у Вас цельное восприятие искусственного интеллекта как науки, даст ориентиры и тенденции в области, а также сориентирует вас в практических аспектах этих областей.
Узнать подробнее и записаться на онлайн-курс СПбГУ «Искусственный интеллект: основы» можно по ссылке.
Форма обучения заочная (дистанционная). Еженедельные занятия будут включать просмотр тематических видеолекций, изучение дополнительных материалов и выполнение тестовых заданий с автоматизированной проверкой результатов, тестирование по пройденному материалу. Для получения сертификата необходимо выполнить все задания и написать финальный экзамен.
Для успешного освоения курса необходимы базовые знания в области информатики.
Модуль 1. Введение в практический ML
Модуль 2. Задача регрессии. Валидация результатов
Модуль 3. Задача классификации
Модуль 4. Задачи кластеризации и понижения размерности
Модуль 5. Ансамбли и нейронные сети
По завершении настоящего курса обучающиеся будут: Знать:
Уметь:
Владеть:
|
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности
ОПК-2 Способен понимать принципы работы современных информационных технологий и программных средств, в том числе отечественного производства, и использовать их при решении задач профессиональной деятельности
ОПК-5 Способен инсталлировать программное и аппаратное обеспечение для информационных и автоматизированных систем
ОПК-6 Способен анализировать и разрабатывать организационно-технические и экономические процессы с применением методов системного анализа и математического моделирования
ОПК-7 Способен разрабатывать алгоритмы и программы, пригодные для практического применения
ПКП-1-ИИР-ОПК-1 Способен анализировать, разрабатывать, внедрять и выполнять организационно-технические и экономические процессы с применением технологий и систем искусственного интеллекта
ПКП-3-ИИР-ПК-1 Способен классифицировать и идентифицировать задачи искусственного интеллекта, выбирать адекватные методы и инструментальные средства решения задач искусственного интеллекта
ПКП-4-ИИР-ПК-2 Способен разрабатывать и тестировать программные компоненты решения задач в системах искусственного интеллекта
ПКП-5-ИИР-ПК-4 Способен разрабатывать и применять методы машинного обучения для решения задач
ПКП-6-ИИР-ПК-5 Способен использовать инструментальные средства для решения задач машинного обучения
ПКП-7-ИИР-ПК-6 Способен создавать и поддерживать системы искусственного интеллекта на основе нейросетевых моделей и методов
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач
УКБ-3 Способен понимать сущность и значение информации в развитии общества, использовать основные методы получения и работы с информацией с учетом современных технологий цифровой экономики, искусственного интеллекта и науки о данных, а также информационной безопасности
язык курса
длительность курса
понадобится для освоения
для зачета в своем вузе
Кандидат технических наук
Должность: Доцент кафедры информатики