course language
course duration
needed to educate
for credit at your university
for studying
Уважаемые слушатели, некоторые материалы данного курса доступны для ознакомительного просмотра. Чтобы получить доступ ко всем материалам курса, необходимо оплатить доступ к материалам.
Курс «Машинное обучение: основы» направлен на практическое знакомство слушателей с базовыми методами машинного обучения и анализа данных. Он поможет освоить классы и методы основных решаемых на сегодняшний день задач машинного обучения и его приложений в области искусственного интеллекта.
Данный курс может быть полезен слушателям, которые активно интересуются современными тенденциями в области машинного обучения, анализа данных и искусственного интеллекта, имеют некоторое представление в данной области и желают приложить имеющиеся знания на практике. Он позволит составить четкое понимание предметной области, разобраться в популярных классах решаемых задач, используемых методах решения, а также областях приложения результатов.
Каждый модуль курса включает видеолекции, презентации, листинги используемого кода, ссылки на рекомендованные источники по теме и другие материалы. Для формирования практических навыков используются не только тестовые задания, но и наборы данных и кейсы.
В результате освоения онлайн-курса обучающиеся смогут произвести базовые операции по анализу набора данных и решению некоторой задачи машинного обучения. В рамках подготовки данных к обучению слушатели научатся понимать и анализировать их, а также идентифицировать потенциальные некорректности. Также обучающиеся смогут решить с исходным набором поставленные задачи регрессии, классификации, кластеризации разными методами и сравнить качество полученных решений. Этот курс совместно с курсом по основам искусственного интеллекта сформирует у Вас цельное восприятие искусственного интеллекта как науки, даст ориентиры и тенденции в области, а также сориентирует вас в практических аспектах этих областей.
Узнать подробнее и записаться на онлайн-курс СПбГУ «Искусственный интеллект: основы» можно по ссылке.
Форма обучения заочная (дистанционная). Еженедельные занятия будут включать просмотр тематических видеолекций, изучение дополнительных материалов и выполнение тестовых заданий с автоматизированной проверкой результатов, тестирование по пройденному материалу. Для получения сертификата необходимо выполнить все задания и написать финальный экзамен.
Для успешного освоения курса необходимы базовые знания в области информатики.
Модуль 1. Введение в практический ML
Модуль 2. Задача регрессии. Валидация результатов
Модуль 3. Задача классификации
Модуль 4. Задачи кластеризации и понижения размерности
Модуль 5. Ансамбли и нейронные сети
По завершении настоящего курса обучающиеся будут: Знать:
Уметь:
Владеть:
|
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности
ОПК-2 Способен понимать принципы работы современных информационных технологий и программных средств, в том числе отечественного производства, и использовать их при решении задач профессиональной деятельности
ОПК-5 Способен инсталлировать программное и аппаратное обеспечение для информационных и автоматизированных систем
ОПК-6 Способен анализировать и разрабатывать организационно-технические и экономические процессы с применением методов системного анализа и математического моделирования
ОПК-7 Способен разрабатывать алгоритмы и программы, пригодные для практического применения
ПКП-1-ИИР-ОПК-1 Способен анализировать, разрабатывать, внедрять и выполнять организационно-технические и экономические процессы с применением технологий и систем искусственного интеллекта
ПКП-3-ИИР-ПК-1 Способен классифицировать и идентифицировать задачи искусственного интеллекта, выбирать адекватные методы и инструментальные средства решения задач искусственного интеллекта
ПКП-4-ИИР-ПК-2 Способен разрабатывать и тестировать программные компоненты решения задач в системах искусственного интеллекта
ПКП-5-ИИР-ПК-4 Способен разрабатывать и применять методы машинного обучения для решения задач
ПКП-6-ИИР-ПК-5 Способен использовать инструментальные средства для решения задач машинного обучения
ПКП-7-ИИР-ПК-6 Способен создавать и поддерживать системы искусственного интеллекта на основе нейросетевых моделей и методов
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач
УКБ-3 Способен понимать сущность и значение информации в развитии общества, использовать основные методы получения и работы с информацией с учетом современных технологий цифровой экономики, искусственного интеллекта и науки о данных, а также информационной безопасности
course language
course duration
needed to educate
for credit at your university
for studying
Кандидат технических наук
Position: Доцент кафедры информатики
It is possible to get a certificate for this course.
The cost of passing the procedures for assessing learning outcomes with personal identification - 3600 Р.