up

Аналитика технологических данных

course video
Добавить в избранное
  • Russian

    course language

  • 10 weeks

    course duration

  • about 15 hours per week

    needed to educate

  • 3 credit points

    for credit at your university

Курс познакомит слушателей с алгоритмами и компьютерными программами, пригодными для практической аналитики и прогнозирования технологических параметров производственного процесса

About

Курс «Аналитика технологических данных» направлен на овладение практическими навыками, умениями и теоретическими основными методами, способами и средствами получения, хранения, переработки информации при решении задач профессиональной деятельности в машиностроении. 
В ходе освоения курса слушатели получат представление о  разработке алгоритмов и компьютерных программ, пригодные для практической аналитики и прогнозирования технологических параметров производственного процесса, сформируют практические навыки сбора, обработку, отображения и архивирования информации об объектах интеллектуальных систем управления производственными процессами  на основе предиктивной аналитики технологических данных для аналитики качества продукции.

Format

Курс -  15 академических часов.

Еженедельные занятия будут включать:

  • просмотр тематических видео-лекций;
  • изучение иллюстрированных тематических материалов, включающих 10 вопросов на самопроверку усвоения теоретического материала;
  • выполнение многовариантных тестовых заданий с автоматизированной проверкой результатов.

Предусмотрено промежуточное контрольное тестирование по каждому разделу курса и итоговое контрольное тестирование по всему содержанию курса с автоматизированной проверкой результатов.

  1. Владимир Савельев. Статистика и котики. М. Издательство АСТ., 2017 – 170 с.
  2. Чарльз Уилан Самая интересная книга о самой скучной науке. Манн, Иванов и Фербер, 2016 г. -352 с.
  3. Foster Provost &Tom Fawcett. Data Science for business. O’reilly, 2013 – 409 p
  4. The field guide to data science. Booz, Allen, Hamilton, 2015 – 126 p.
  5. Steven S. Skiena. The Data scence design manual. Springer, 2017, - 453  p. 
  6. Джоэл Грас. Data Science. Наука о данных с нуля. БХВ-Санкт-Петербург, 2017 год – 336 с.
  7. Питер Брюс и Эндрю Брюс. Практическая cтатистика для специалистов Data Science, БХВ-Санкт-Петербург, 2018 -303с

Course program

Курс состоит из шести разделов:

Раздел 1. Основы аналитики
1.1 Основы аналитики. Выборки
1.2 Основы статистики
1.3 Основы аналитики. Корреляция и регрессия
1.4 Основы аналитики. Алгоритмы и прогнозирование
1.5 Визуализация

Раздел 2. SQL и получение данных
2.1 Введение в SQL. Установка СУБД
2.2 Создание и удаление таблиц. Ограничение значений данных
2.3 Ввод, удавление и изменение данных. Запросы SQL
2.4 Сложные запросы
2.5 Представления. Оконная функция
2.6 Проектирование баз данных

Раздел 3. Python для анализа данных
3.1 Основы Python
3.2 Библиотека NumPy
3.3 Библиотека Pandas

Раздел 4. Статистика в Python
4.1 Визуализация с Python. 
4.2 Методы визуализации данных. 
4.3 Корреляция. Практикум по SciPy
4.4 A/B тестирование
4.5 Работа с временными рядами в Python

Раздел 5. Метрики данных
5.1 Продуктовые метрики данных

Раздел 6. Машинное обучение
6.1 Введение в машинное обучение. Обучение с учителем/без учителя.
6.2 Библиотека Scikit-learn
6.3 NoSQL-подход к работе с большими данными
6.4 Кластеризация. Построение модели и метрики
 

Education results

В результате освоения курса «Аналитика технологических данных» студент будет способен:

Знать современные методы и инструментальные средства анализа больших данных; типы анализа больших данных, виды аналитики;основы языка Python и основные алгоритмические конструкции (типы данных, ветвление, циклы и основные операторы); статистические модели; машинные методы в обработке данных; математический анализ, теория вероятности и математическая статистика; методы интерпретации и визуализации анализа больших данных; технологии подготовки и проведения презентаций.

Уметь планировать аналитические работы с использованием технологий больших данных; проводить аналитические работы с использованием технологий больших данных; представлять содержание и результаты работ по анализу больших данных; осуществлять интеграцию и преобразование данных в ходе работ по анализу больших данных;

Владеть навыками использования Jupyter; Pandas, Py Spark. эффективной работы с базами данных; визуализации полученных результатов; использования машинных методов в обработке данных.

Formed competencies

  • ПК-1 Применяет языки программирования (Python) для решения профессиональных задач
  • ПК-2. Применяет СУБД (PostgeSQL)

Education directions

Knowledge

  • современные методы и инструментальные средства анализа больших данных;
  • типы анализа больших данных, виды аналитики;
  • основы языка Python и основные алгоритмические конструкции (типы данных, ветвление, циклы и основные операторы); статистические модели;
  • машинные методы в обработке данных;
  • математический анализ, теория вероятности и математическая статистика;
  • методы интерпретации и визуализации анализа больших данных;
  • технологии подготовки и проведения презентаций.

Skills

  • планировать аналитические работы с использованием технологий больших данных;
  • проводить аналитические работы с использованием технологий больших данных;
  • представлять содержание и результаты работ по анализу больших данных;
  • осуществлять интеграцию и преобразование данных в ходе работ по анализу больших данных;

Abilities

  • навыки использования Jupyter; Pandas, Py Spark. эффективной работы с базами данных;
  • визуализации полученных результатов;
  • использования машинных методов в обработке данных.
портрет преподавателя

Чаруйская Марианна Александровна

Кандидат экономических наук, доцент
Position: Доцент, заместитель директора института, МГТУ «СТАНКИН»

портрет преподавателя

Нежметдинов Рамиль Амирович

Доктор технических наук, доцент
Position: Профессор, директор Единого деканата, МГТУ «СТАНКИН»

портрет преподавателя

Ковалев Илья Александрович

Кандидат технических наук, доцент
Position: доцент, МГТУ «СТАНКИН»

Similar courses