course language
course duration
needed to educate
for credit at your university
Курс «Сбор и анализ данных в Python» поможет овладеть навыками Data Culture.
Курс охватывает все основные статистические концепции. В первой половине курса слушатели знакомятся с основными понятиями из математической статистики и нарабатывают необходимый для их понимания бэкграунд из теории вероятностей. Слушатели научатся делать описательный анализ данных, визуализировать данные и исследовать линейные взаимосвязи.
Вторая часть посвящена более продвинутым темам: параметрическим и непараметрическим тестам, принципу проверки статистических гипотез, а также построению прогностических моделей на основе линейной и логистической регрессии. Кроме того, в течение курса демонстрируется представление результатов анализа данных в графическом виде: рассматриваются как самые простые и классические методы визуализации, так и более сложные.
Каждая неделя курса состоит из теоретического блока и практической части. Особенность практической части заключается в том, что она реализуется сразу с использованием двух инструментов: Google Sheets и языка программирования Python. Можно научиться реализации изученных методов с применением обоих инструментов или выбрать один.
Для прохождения данного курса не требуется специальная математическая подготовка, поэтому курс подойдет для слушателей любого уровня.
Курс позволяет освоить следующие компетенции в соответствии с Рекомендациями к дополнительным профессиональным программам ИТ-профиля, реализуемым в рамках проекта «Цифровые кафедры» университета–участника программы стратегического академического лидерства «Приоритет-2030»:
Сфера: Искусственный интеллект и машинное обучение
Компетенция: Применяет математический аппарат для решения задач по оценке и разработки моделей
Уровень: Базовый
После завершения курса мы рекомендуем вам обратить внимание на курсы (в последовательности) Сбор и анализ данных в Python, Основы машинного обучения, Математическая статистика и А/В тестирование, Продвинутые методы машинного обучения и Статистические методы анализа данных. Также рекомендуем ознакомиться с курсами Анализ текстовых данных и Компьютерное зрение.
course language
course duration
needed to educate
for credit at your university
Магистр
Position: Старший преподаватель Департамента больших данных и информационного поиска Факультута компьютерных наук, академический руководитель образовательной программы "Магистр по наукам о данных" Факультета компьютерных наук, преподаватель Центра непрерывного образования Факультета компьютерных наук
Магистр
Position: Методист, Приглашенный преподаватель Департамента больших данных и информационного поиска, Факультет компьютерных наук
Стоимость доступа ко всем материалам курса, возможности пройти экзамен с прокторингом и получить сертификат составляет 3600 рублей.