язык курса
длительность курса
понадобится для освоения
для зачета в своем вузе
Курс посвящён изучению основных методов машинного обучения, используемых для факторного, кластерного и классификационного анализов. В ходе обучения, слушатели смогут освоить основные подходы и получить навыки решения практических задач поиска закономерностей в сырых данных.
Обработка и анализ больших данных представляет собой новую практическую задачу, требующую навыков работы с современным инструментарием. В настоящее время данные называют «нефтью 21 века», они накапливаются в корпоративных и государственных информационных системах, социальных сетях, веб-блогах и сайтах и потенциально являются ценным ресурсом для извлечения новых знаний, инсайтов для научных исследований, повышения эффективности и конкурентоспособности предприятий. Методы интеллектуального анализа больших данных, таким образом, представляют собой тот необходимый инструмент для высвобождения этого потенциала.
Курс «Математические и инструментальные методы машинного обучения» входит в число базовых при подготовке современных экономистов-математиков на уровне магистров. Изучение дисциплины позволит студентам получить и развивать навыки анализа и диагностики проблем экономики, современных методов их решения, а также ознакомиться с современной спецификой исследования операций в зарубежных и отечественных организациях.
Целями и задачами курса являются: формирование у будущих магистров фундаментальных общеэкономических и естественнонаучных знаний; освоение магистрантами математических и инструментальных методов машинного обучения; использование современных информационно-коммуникационных технологий в профессиональной деятельности; закрепление профессиональных навыков в области прогнозирования основных социально-экономических показателей деятельности предприятия, отрасли, региона и экономики в целом.
В курсе использованы инновационные подходы: включение в факультетскую систему «ИНФОМИФИСТ» 18 уроков (лекций) курса с тренингами и контрольными вопросами, проведения зачета в электронном формате с индивидуальной идентификацией студентов (логин, пароль) и троекратной возможностью пересдачи.
Компетенции по решению задач в анализе данных с помощью методов машинного обучения, будут получены студентами после прохождения курса «Математические и инструментальные методы машинного обучения». Изучение дисциплины позволит выработать навыки постановки и решения проблем развития организации, развить творческое мышление специалистов в области системного анализа и бизнес-моделирования, выработать умение решать управленческие проблемы в конкретной экономической ситуации.
Мотивационная фраза: «Освоение интеллектуальных методов для решения интеллектуальных задач».
Стоимость доступа к материалам курса за исключением ознакомительной части (включая тестовые материалы и возможность пройти экзамен с прокторингом и получить сертификат) составляет 3600 рублей. Для этого нужно пройти текущее тестирование не меньше чем на 60% и итоговый тест не меньше чем на 60%.
Платформа RapidMiner
Модуль 1. Классификация (Неделя 1)
Урок 13. Постановка задачи классификации/Задача классификации с учителем. Понятие и свойства класса. Обзор основных методов классификации. Байесовская наивная классификация/Понятие байесовского классификатора.
Урок 14. Деревья решений в задачах классификации/Понятие деревьев решений. Примеры.
Модуль 2. Методы поиска ассоциативных правил (Неделя 2)
Урок 15. Понятие правил ассоциации. Метод Apriori. Метод FP-Growth. Примеры.
Урок 16. Понятие шаблона последовательных событий. Метод Apriori. Метод GSP.
Модуль 3. Интеллектуальный анализ текста. (Неделя 3)
Урок 17. Токенизация. Векторизация. Регулярные выражения.
Урок 18. Стемминг. Лемматизация. Удаление стоп-слов. Анализ тональности.
В результате обучения по курсу слушатель будет
Знать:
Уметь:
Владеть:
Знать основные стандарты и методологии анализа и обработки социально-экономических данных
Знать основные методы описания и визуализации структуры социально-экономических данных
Знать основные методы сокращения размерности многомерных задач
Знать основные методы поиска закономерностей в массивах социально-экономических данных
Знать основные методы анализа качественных и текстовых данных
Уметь описывать и визуализировать исходные социально-экономические данные
Уметь проводить обработку исходных социально-экономических данных
Уметь искать закономерности в исходных социально-экономических данных
Уметь создавать прогнозы на основании исходных социально-экономических данных
Владеть методами описания и визуализации социально-экономических данных
Владеть методами анализа и обработки социально-экономических данных
Владеть методами анализа качественных и текстовых данных
Владеть инструментальными средствами анализа и обработки социально-экономических данных
язык курса
длительность курса
понадобится для освоения
для зачета в своем вузе
Кандидат технических наук, Доцент
Должность: Доцент отделения интеллектуальных кибернетических систем офиса образовательных программ