up

Обработка данных на языке Python. Часть 1

51 days
Before the end of the enrollment
  • Russian

    course language

  • от 10 до 16 недель

    course duration

  • from 4 to 7 hours per week

    needed to educate

  • 2 credit points

    for credit at your university

About

В курсе изучаются основные подходы и библиотеки обработки и визуализации данных в языке Python. Слушатели учатся методам работы с разными типами данных – от слабоструктурированных, до табличных, а также учатся решать практические задания по подготовке данных, с использованием открытых наборов данных и API. В курсе слушатели знакомятся с библиотеками, которые необходимы для эффективного решения широкого круга аналитических задач, такими как Ipython, Pandas, Numpy, Matplotlib и Scikit-learn, и др.

Format

Стоимость доступа к материалам курса за исключением ознакомительной части (включая тестовые материалы и возможность пройти экзамен с прокторингом и получить сертификат) составляет 3600 рублей. Для этого нужно пройти текущее тестирование не меньше чем на 60% и итоговый тест не меньше чем на 60%.

  1. Python for Data Analysis by Wes McKinney (O’Reilly). Copyright 2017 Wes McKinney, 978-1-491-95766-0
  2. Волкова В.М., Программные системы статистического анализа. Обнаружение закономерностей в данных с использованием системы R и языка Python [Электронный ресурс]: учебное пособие / Волкова В.М. - Новосибирск : Изд-во НГТУ, 2017. - 74 с. - ISBN
  3. 978-5-7782-3183-2 - Режим доступа: http://www.studentlibrary.ru/book/ISBN9785778231832.html
  4. www.python.org

Course program

Модуль 1. IPython: интерактивные вычисления и среда разработки. Облачная среда вычислений Google Colab.

Модуль 2. Основы работы с модулем Pandas. Датафреймы и базовые операции над ними.

Модуль 3. Чтение и запись данных, форматы файлов. Библиотека Os.

Модуль 4. Переформатирование данных: очистка, преобразование, слияние, изменение формы .

Модуль 5. Агрегирование данных и групповые операции.

Модуль 6. Основы работы с модулем NumPy: массивы и векторные вычисления.

Модуль 7. Построение графиков и визуализация. Библиотека Matplotlib.

Модуль 8. Временные ряды. Передискретизация периодов. Скользящее среднее.

 

Education results

В результате обучения по курсу слушатель будет:

Знать:

  • специализированные библиотеки Python для анализа данных

Уметь:

  • разрабатывать прикладные программы на языке программирования Python

Владеть:

  • Практическими навыками использования набора библиотек языка Python для прикладных задач в области анализа данных

Education directions

Knowledge

Знание специализированных библиотек Python для анализа данных.

Skills

Умение разрабатывать прикладные программы на языке программирования Python.

Abilities

Практический навык использования набора библиотек языка Python для прикладных задач в области анализа данных.

Киреев Василий Сергеевич

Кандидат технических наук, Доцент
Position: Доцент отделения интеллектуальных кибернетических систем офиса образовательных программ

course completion certificate

Certificate

It is possible to get a certificate for this course.

The cost of passing the procedures for assessing learning outcomes with personal identification - 3600 Р.

Similar courses