up

Введение в искусственный интеллект

2702 days
Before the end of the enrollment
  • Russian

    course language

  • 12 weeks

    course duration

  • от 3 до 4 часов в неделю

    needed to educate

Курс «Сбор и анализ данных в Python» поможет овладеть навыками Data Culture

About

 Курс является вводным и знакомит слушателей с основами науки о данных и принципами работы искусственного интеллекта. Курс будет интересен и полезен не только тем, кто уже знаком с основами анализа данных и программированием, но и тем, кто не имеет бэкграунда в этой области.

За последние десятилетия во многих областях науки и индустрии стали накапливаться большие объемы данных, а также стали развиваться методы машинного обучения, позволяющие извлекать из этих данных знания и экономическую пользу. Сегодня методы анализа данных позволяют решать настолько сложные задачи, что в применении к ним всё чаще используют термин “искусственный интеллект”.

Задача онлайн курса от НИУ ВШЭ — дать слушателям базовое представление о методах искусственного интеллекта, познакомить с терминологией и научить применять некоторые из методов для решения несложных задач. В процессе обучения  вы дистанционно узнаете больше о мире искусственного интеллекта, его методах и даже самостоятельно научитесь обучать несложные модели на готовых данных.

Format

Курс состоит из 12 недель. Каждая неделя содержит видеолекции, тестовые задания и материалы для самостоятельного изучения. В открытом доступе вы можете ознакомиться с видеолекциями первых двух недель, остальные материалы станут доступны после оплаты курса. 

Requirements

Перед изучением курса мы рекомендуем вам изучить курсы ...

Course program

  1. Введение в искусственный интеллект
  2. Введение в машинное обучение
  3. Машинное обучение в задачах классификации
  4. Введение в машинное обучение: кластеризация и визуализация данных
  5. Введение в теорию вероятностей
  6. Введение в математическую статистику
  7. A/B тестирование
  8. Основы визуализации данных
  9. Введение в нейронные сети
  10. Нейронные сети в задачах распознавания изображений
  11. Нейронные сети в задачах стилизации изображений
  12. Другие задачи искусственного интеллекта: рекомендательные системы и  ассоциативные правила

Education results

В результате усвоения курса слушатели научатся:  

  1. Обучать несложные модели на готовых данных в Orange
  2. Интерпретировать статистические данные
  3. Проводить разведывательный анализ данных
  4. Понимать основные ошибки в рассуждениях на основе данных
  5. “Отличать случайное от неслучайного” — проверять гипотезы
  6. Грамотно визуализировать результаты исследований

Abilities

 Курс позволяет освоить следующие компетенции в соответствии с Рекомендациями к дополнительным профессиональным программам ИТ-профиля, реализуемым в рамках проекта «Цифровые кафедры» университета–участника программы стратегического академического лидерства «Приоритет-2030»:

Сфера: Искусственный интеллект и машинное обучение
Компетенция: Применяет искусственный интеллект и машинное обучение
Уровень: Базовый

"Сфера: Искусственный интеллект и машинное обучение
Компетенция: Решает задачи искусственного интеллекта (ИИ)
Уровень: Базовый"

Мягких Павел Игоревич


Position: приглашенный преподаватель Департамента больших данных и информационного поиска/Факультет компьютерных наук

Трусов Иван Алексеевич


Position: Приглашенный преподаватель Департамента больших данных и информационного поиска, Факультет компьютерных наук

Бурова Маргарита Борисовна

Магистр
Position: Старший преподаватель Департамента больших данных и информационного поиска Факультута компьютерных наук, академический руководитель образовательной программы "Магистр по наукам о данных" Факультета компьютерных наук, преподаватель Центра непрерывного образования Факультета компьютерных наук

course completion certificate

Certificate

Стоимость доступа к тестовым материалам, возможность пройти экзамен с прокторингом и получить сертификат составляет 3600 рублей