course language
course duration
needed to educate
for credit at your university
Курс «Введение в искусственный интеллект» поможет овладеть навыками Data Culture.
Курс является вводным и знакомит слушателей с основами науки о данных и принципами работы искусственного интеллекта. Курс будет интересен и полезен не только тем, кто уже знаком с основами анализа данных и программированием, но и тем, кто не имеет бэкграунда в этой области.
За последние десятилетия во многих областях науки и индустрии стали накапливаться большие объемы данных, а также стали развиваться методы машинного обучения, позволяющие извлекать из этих данных знания и экономическую пользу. Сегодня методы анализа данных позволяют решать настолько сложные задачи, что в применении к ним всё чаще используют термин “искусственный интеллект”.
Задача онлайн курса от НИУ ВШЭ — дать слушателям базовое представление о методах искусственного интеллекта, познакомить с терминологией и научить применять некоторые из методов для решения несложных задач. В процессе обучения вы дистанционно узнаете больше о мире искусственного интеллекта, его методах и даже самостоятельно попробуете обучать несложные модели на готовых данных.
Курс состоит из коротких видеолекций от 5 до 15 минут длиной. После каждого фрагмента лекции предлагаются не оцениваемые вопросы на понимание прослушанного материала. Если вам не удается ответить на вопрос, мы очень рекомендуем прослушать фрагмент еще раз и затем только переходить к следующему фрагменту лекции.
На каждой неделе будет представлен оцениваемый тест из 10-15 вопросов. Также для нескольких тем будут предложены расчетные задачи и задания с взаимным оцениванием. Эти задания помогут закрепить полученные знания.
Перед изучением курса мы рекомендуем вам изучить курсы Цифровая грамотность, Основы программирования на Python, Статистика для анализа данных и Сбор и анализ данных в Python.
В результате усвоения курса слушатели научатся:
Курс позволяет освоить следующие компетенции в соответствии с Рекомендациями к дополнительным профессиональным программам ИТ-профиля, реализуемым в рамках проекта «Цифровые кафедры» университета–участника программы стратегического академического лидерства «Приоритет-2030»:
Сфера: Искусственный интеллект и машинное обучение
Компетенция: Применяет искусственный интеллект и машинное обучение
Уровень: Базовый
Сфера: Искусственный интеллект и машинное обучение
Компетенция: Решает задачи искусственного интеллекта (ИИ)
Уровень: Базовый
После завершения курсы мы рекомендуем вам обратить внимание на курсы Сбор и анализ данных в Python, Основы машинного обучения, Математическая статистика и А/В тестирование, Продвинутые методы машинного обучения, Статистические методы анализа данных, Python как иностранный, Основы программирования на Python, Анализ текстовых данных, Python для извлечения и обработки данных, Цифровая грамотность и Компьютерное зрение.
course language
course duration
needed to educate
for credit at your university
Position: приглашенный преподаватель Департамента больших данных и информационного поиска/Факультет компьютерных наук
Position: Приглашенный преподаватель Департамента больших данных и информационного поиска, Факультет компьютерных наук
Магистр
Position: Старший преподаватель Департамента больших данных и информационного поиска Факультута компьютерных наук, академический руководитель образовательной программы "Магистр по наукам о данных" Факультета компьютерных наук, преподаватель Центра непрерывного образования Факультета компьютерных наук
Стоимость доступа ко всем материалам курса, возможности пройти экзамен с прокторингом и получить сертификат составляет 3600 рублей.
A participant certificate is usually issued upon reaching 60 % of the overall rating, subject to the delivery of works before a hard deadline. The honors certificate is usually issued upon reaching 90 % of the overall rating, subject to the delivery of the work before the soft deadline.