course language
course duration
needed to educate
for credit at your university
Учебная дисциплина "Методы исследования в менеджменте" является дисциплиной базовой части при подготовке магистров и бакалавров по программам «Инноватика» и «Менеджмент», связанной с изучением теоретических основ статистики, теории вероятностей и получением комплексных знаний по практическому использованию методов обработки и анализа информации в бизнес - среде.
Изучение дисциплины позволяет использовать полученные знания на практике при обработке первичных данных, представлении полученных результатов в виде таблиц, графиков, диаграмм, построении обобщающих показателей. На их основе обеспечивается возможность использования наиболее эффективных статистических и количественных методов и моделей в экономическом анализе, включая построение распределений, количественные методы оценки вероятностей, методы принятия решений в условиях неопределенности, методы построения доверительных интервалов, методы построения и оценки статистических гипотез.
Предусмотрены задания для самостоятельной работы в среде Excel.
Объект дисциплины:
Анализ первичных данных для выявления закономерностей, проверки гипотез и принятия эффективных управленческих решений.
Предмет дисциплины:
Количественные методы анализа первичных данных, методы анализа недетерминированных ситуаций, включая построение распределений, количественные методы оценки вероятностей, методы принятия решений в условиях неопределенности, методы построения доверительных интервалов, методы построения и оценки статистических гипотез.
Целью курса является:
Освоить совокупность инструментальных количественных методов анализа первичных данных для принятия эффективных управленческих решений.
Развитие профессиональных знаний и навыков:
Еженедельные занятия будут включать просмотр тематических видео-лекций и выполнение тестовых заданий с автоматизированной проверкой результатов. Важным элементом изучения дисциплины является написание творческих работ в формате сочинения-рассуждения по заданным темам, которое должно содержать полные развернутые ответы, подкрепленные примерами из лекций и/или личного опыта, знаний или наблюдений.
В открытом доступе вы можете ознакомиться с видеолекциями первых двух недель, остальные материалы станут доступны после оплаты курса.
Перечень дисциплин, которые желательно освоить до начала освоения данной дисциплины:
Курс рассчитан на широкую аудиторию, а также на слушателей обучающихся по экономическим и управленческим специальностям. В процессе изучения дисциплины слушатель приобретает компетенции, необходимые для его профессиональной деятельности.
Лекция 1: Введение в курс. Гистограммы. Диаграммы рассеяния.
Лекция 2: Временные ряды. Сводные таблицы.
Лекция 3: Сводные таблицы – примеры анализа.
Лекция 4: Обобщающие показатели. Прямоугольные диаграммы.
Лекция 5: Матрица парных корреляций. Общий пример анализа данных.
Лекция 6: Кейс «Благосостояние».
Лекция 7: Основные правила теории вероятностей. Формализация случайных величин. Визитная карточка случайной величины – математическое ожидание и стандартное отклонение.
Лекция 8: Совместные и условные вероятности. Биномиальные и нормальные определения.
Лекция 9: Статистические оценки. Общий план анализа недетерминированной ситуации.
Лекция 10: Типовые статистические задачи.
Лекция 11: Принятие решений в недетерминированных многошаговых ситуациях. Надстройка TreePlan.
Лекция 12: Примеры выбора решений с использованием надстройки TreePlan.
В результате каждый слушатель должен:
Знать:
Уметь:
Владеть:
course language
course duration
needed to educate
for credit at your university
Доктор технических наук
Position: Профессор Высшей школы управления и инноваций МГУ имени М.В.Ломоносова