наверх

Основы машинного обучения

  • 11 недель

    длительность курса

  • от 5 до 8 часов в неделю

    понадобится для освоения

  • 4 зачётных единицы

    для зачета в своем вузе

Курс посвящён основам анализа данных и машинного обучения. По результатам слушатели освоят способы предобработки и визуализации данных, изучат основные методы машинного обучения (линейные, метрические, решающие деревья и их композиции), научатся оценивать качество моделей. Курс пригодится всем, кто хочет «с нуля» погрузиться в область машинного обучения, получить первые практические навыки и начать применять их для решения собственных задач по извлечению пользы из данных.

О курсе

Курс посвящён основам анализа данных и машинного обучения. По результатам слушатели освоят способы предобработки и визуализации данных, изучат основные методы машинного обучения (линейные, метрические, решающие деревья и их композиции), научатся оценивать качество моделей. Практика проходит на языке Python и основана на библиотеках pandas, matplotlib, scikit-learn. Для успешного прохождения курса  требуются знания математики на уровне школьных курсов, а также навыки программирования на Python. Контроль на курсе представлен в виде заданий на программирования, заданий на построение выводов (проверяются с помощью взаимного оценивания), а также тестов на знание теоретического материала.

Формат

Курс состоит из 11 недель, каждая включает в себя несколько коротких видеолекций (суммарная продолжительность — от 60 до 90 минут), тест на знание теоретического материала (5-15 вопросов), а также тест, включающий в себя выполнение задания по программированию. На некоторых неделях задание по программированию заменено заданием на взаимное оценивание. В конце курса предусмотрен итоговый экзамен, состоящий из тестов.

Python, библиотеки numpy, pandas, matplotlib, seaborn, scikit-learn

Требования

Освоение школьного курса математики, навыки программирования на Python

Программа курса

  1. Основные понятия и задачи в машинном обучении
  2. Метод k ближайших соседей
  3. Линейная регрессия
  4. Градиентный спуск
  5. Линейная классификация
  6. Логистическая регрессия и метод опорных векторов
  7. Решающие деревья
  8. Бэггинг и случайный лес
  9. Градиентный бустинг
  10. Обучение без учителя
  11. Рекомендательные системы

Соколов Евгений Андреевич


Должность: Старший преподаватель факультета компьютерных наук, Департамент больших данных и информационного поиска

Зимовнов Андрей Вадимович


Должность: Старший преподаватель факультета компьютерных наук, Департамент больших данных и информационного поиска

Ковалев Евгений Игоревич


Должность: Приглашенный преподаватель факультета компьютерных наук, Департамент больших данных и информационного поиска

Кохтев Вадим Михайлович


Должность: Приглашенный преподаватель факультета компьютерных наук, Департамент больших данных и информационного поиска

Рысьмятова Анастасия Александровна

Магистр
Должность: Приглашенный преподаватель факультета компьютерных наук, Департамент больших данных и информационного поиска

Филатов Артём Андреевич


Должность: Приглашенный преподаватель факультета компьютерных наук, Департамент больших данных и информационного поиска